GFG Microsystems Limited
IT Department

[image: image1.png]

Information Technology Department

The Software Test Planning Standard
GFG Microsystems Limited
GFG IT Development
GFG IT
The Software Test Planning Standard
Standards
SO
0.01
GFG IT SET DOCUMENT “-UK-99-SO 16/0.01"
GFG IT-UK-99-SO 16/0.01

30 December 1997
You will be notified if any standard is revised; it is your responsibility to obtain up-to-date personal copies of standards and to destroy old ones.

DOCUMENT DISTRIBUTION

Document Identification

Document Ref:

GFG IT-UK-99-SO 16/0.01

Authors Ref:

s016o001.DOC

Author:

Date:

30 December 1997

Dept/Section:

GFG IT Development

Version:

0.01

Reason for Distribution

For Review

Status:

Draft

Distribution of Approved Version:

Reviewers
Department
Responsibilities
Comments Received

Issued By:

...

...

Copy No:

Issued To:

CONTENTS

51
INTRODUCTION

1.1
Purpose
5
1.2
Scope
5
1.3
Audience
5
1.4
Related Standards
5
1.5
Other Related Documents
5
1.6
Revision History
6
2
LAYOUT AND CONTENT OF A SOFTWARE TEST PLAN
7
2.1
Introduction
7
2.2
Architectural Design of Tests
7
2.3
Specification of Testing Tools
7
2.4
Resources and Dependencies
7
2.5
Detailed Test Specifications
8
3
CONTENT OF AN ACCEPTANCE TEST SPECIFICATION
10
4
LAYOUT AND CONTENT OF A TEST REPORT
11
4.1
Introduction
11
4.2
Environment
11
4.3
Test Results
11
A
SOFTWARE TEST PLAN CONTENTS CHECKLIST
13
A.1
Introduction
13
A.2
Architectural Design of Tests
13
A.3
Specification of Testing Tools
13
A.4
Resources and Dependencies
13
A.5
Detailed Test Specifications
13
B
TEST REPORT CONTENTS CRECKLIST
15
B.1
Introduction
15
B.2
Environment
15
B.3
Test Results
15
C
NOTES ON DESIGNING SOFTWARE TESTS
16
C.1
The Use of a Testing Hierarchy
16
C.2
White Box and Black Box Testing
16
C.3
Test Data Generation
18
C.4
Testing Methods Worth Consideration
18
C.5
Making Tests Repeatable
20
C.6
Test Results
21
C.7
Post-Installation Testing
22
C.8
Planning for Change
23
D
EXAMPLE TEST REPORT
24
D.1
Introduction
24
D.2
Environment
24
D.3
TEST RESULTS
24

1 INTRODUCTION

1.1 Purpose

This standard describes the content and layout of Software Test Plans and Software Test Reports and gives guidelines on the design of software tests.

A general definition of the purpose of testing a system is to locate errors but testing can also be used to demonstrate how well the system satisfies its specifications.

Software testing includes, but is not restricted to, forms of testing such as unit testing, integration testing, system testing and regression testing.

1.2 Scope

A Software Test Plan defines how the behaviour of the system or some part of the system is to be tested in detailed terms. It specifies all necessary tools and methods to be used for testing and it defines the environment required for testing.

1.3 Audience

This standard is intended for all those involved in the creation and review of Software Test Plans and Software Test Reports.

1.4 Related Standards

The reader should be familiar with the following documents that supplement the contents of this Standard.

[1]
GFG IT UK
SO
17
Document Writing Standard

[2]
GFG IT UK
SO
14
Reviewing Standard

[3]
GFG IT UK
SO
15
Auditing Standard

[4]
GFG IT UK
SO
4
Project Quality Assurance Planning Standard

[5]
GFG IT UK
SO
??
Hardware Testing Standard

1.5 Other Related Documents

[6]
BS
5887
1980
Code of Practice for Testing of Computer-based Systems

[7]
ANSI/IEEE
Std 1012
1986
IEEE Standard for Software Verification and Validation Plans

[8]
ANSI/IEEE
Std 829
1983
Standard for Software Test Documentation

[9]
ANSI/IEEE
Std 1008
1987
Standard for Software Unit Testing

1.6 Revision History

Version
Date
Author
Description
Sections Affected

0.01
97/12/30
GFG
First draft
All, diagrams and forms to be added

LAYOUT AND CONTENT OF A SOFTWARE TEST PLAN

A software test plan should contain the following sections:

1.7 Introduction

This section should be a standard document introduction.

The scope section should state exactly what system or part of the system is being tested and against what criteria the system or part of the system is being tested. This will normally be a reference to a Functional Specification or Architectural Design Specification. In addition any features that are not being tested (presumably because they are covered by another plan) should be listed. Normally a sub-system will be the subject of a single test plan but it may be appropriate to sub-divide a sub-system for testing purposes.

1.8 Architectural Design of Tests

The general test methods and the level of testing to be used should be defined. It is quite reasonable for one plan to cover low-level testing of a module and for another plan to cover higher level sub-system testing.

1.9 Specification of Testing Tools

In some software test plans the specification of testing tools may occupy a number of separate sections.

Any testing tools created specifically for the sub-system or module being tested should be defined to a detailed level in separate sections.

Testing tools will not be discarded after the completion of testing as they will be kept for maintenance reasons. This means that any testing tools have to be properly designed, implemented, documented and configuration managed. A large proportion of faults found during testing are caused by bugs in the testing tools and these waste time and effort.

Testing tools include (and in some cases may be restricted to) data files. Normally test data files will be defined sufficiently by the detailed test specifications.

1.10 Resources and Dependencies

This section should state what resources are required for the tests. This includes the time of people performing the tests and also includes access to specialised testing equipment or programs. If access to specialised and/or scarce equipment is needed then this section should make clear how long the equipment is required for. If this information exists in the project plan then this section should refer to it rather than duplicate information.

This section should also state what activities the tests are dependent on. If this information exists in the project plan then this section should refer to it rather than duplicate information.

1.11 Detailed Test Specifications

This section (or, more normally, these sections) should contain descriptions of all the tests to be performed

1.11.1 Grouping of Tests

Unless the plan defines only a small number of tests the tests should be divided into functional groups. The sub-division may be based on separate test groups for separate areas of the system or sub-system and/or separate test groups for varying levels of detail.

It is normal for each group of tests to be defined in a separate section.

For reference purposes each group of tests should be given a group number and each individual test within a group should be given a test number. This means that any test can be identified by a combination of test plan object number, test group number and individual test number. These numbers can normally be best expressed in a hierarchical manner, for example test 095/1.02/3/5 would correspond to test number 5 of test group 3 from the tests defined in version 1.02 of object 095 (in this case the project number has been omitted). This identification should be included automatically in all test results wherever possible.

1.11.2 Ordering of Tests

Wherever possible a group of tests should not rely on the environment set up by other groups. This is to ease the re-running of individual test groups. However, if the tests have been designed in a hierarchical manner then it is quite reasonable for one group of tests to assume that all the features tested by previous groups of tests are functioning.

Within a group of tests individual tests may rely on the results of previous tests in the same group. In this way each group of tests can be seen as a logical sequence of tests, each test building on the environment set up by previous tests.

1.11.3 Format of Test Specifications

The tests should be described in sufficient detail to allow them to be implemented by somebody familiar with the sub-system or module being tested. It is not necessary to define each test in complete detail but any non-obvious factors should be covered.

The description of each test group should include:

i)
a statement of the part of the system being tested by the group

ii)
a statement of the purpose of the tests

iii)
a statement of any assumptions

iv)
a description of the environment required for the test group

v)
a statement of any test groups which should precede the group

The description for each test in the group should include:

1)
Action - the action to be taken

2)
Results - the expected results and how to check them

3)
Comments - any useful ancillary comments

CONTENT OF AN ACCEPTANCE TEST SPECIFICATION

Normally it is preferable for clients to produce an Acceptance Test Specification. This is because it is more likely to reflect their view of the system and may expose ambiguities in the Functional Specification and also because it is work that is unlikely to be separately funded. However, on some projects it is necessary for GFG IT to produce an Acceptance Test Specification and so it is necessary to lay down guidelines on the content of an Acceptance Test Specification.

An Acceptance Test Specification should have the same layout as a Software Test Plan with the exception of the Resources section which is not required (information on the resources required for acceptance testing will be required for the Project Plan but this information does not belong in the Acceptance Test Specification). The Dependencies section will not normally be necessary, depending on how the Acceptance Test Specification is structured and so a typical Acceptance Test Specification should have the following sections:

i)
Introduction

ii)
Architectural Design of Tests

iii)
Specification of Testing Tools

iv)
Detailed Test Specifications

The content of an Acceptance Test Specification is slightly different from that of a normal Software Test Plan as it is concerned with directly testing how the Functional Specification has been implemented in the final and complete system. All the tests should be directly attributable to specific sections (and possibly paragraphs) of the Functional Specification and each feature described in the Functional Specification should be tested by at least one test defined in the Acceptance Test Specification. It may be worthwhile, for checking purposes, noting down the relevant section or sections from the Functional Specification by each test in the Acceptance Test Specification.

The grouping of tests in the Acceptance Test Specification should follow the structure of the Functional Specification unless there is some overriding reason to use a different structure.

LAYOUT AND CONTENT OF A TEST REPORT

A test report is a permanent record that certain tests have been run. A test that is not mentioned in a test report or log is of no value as nobody can be sure if and when the test was run.

There is no need for a test report to be a large document containing all the test results, whatever their form. If the test results are contained in output files, screen dumps, plots or listings then it is pointless (and can be positively harmful) to try to include them in a formal document. It is better to have a brief document that may be only one or two pages long that refers to the output files in such a way that they can be found. An example of a very simple test report is included in Appendix D.

If a document such as a test log exists then a test report can take the form of a very simple document that refers to the test log.

A test report normally corresponds to the tests defined by a single hardware or software test plan. However, it is quite possible for a test report to cover more than one test plan or only part of a test plan.

The fact that a test report has been produced does not remove the need to create fault reports for any problems encountered and the person who found the faults is responsible for reporting them.

A test report should have the following sections:

1.12 Introduction

This should be a standard document introduction. The scope section should refer to the test plan or plans to which the report relates.

1.13 Environment

This section should state exactly which version(s) of which objects comprise the system that has been tested (possibly by a reference to a version of a derived object) and should state who performed the tests and where and when they were performed.

Since the version of the object(s) being tested are recorded it is clear when an object has been modified after being tested and so needs re-testing.

1.14 Test Results

This section should give the results of the tests. In the ideal case this may be a simple statement that all tests gave the correct results. Where test results are given individually they should be grouped in the test groups defined in the relevant test plans.

More detail may be required for some systems where defining correct behaviour is difficult or where performance is being measured in quantitative rather than qualitative terms.

If the test results are not contained in the test report then sufficient description should be given to allow them to be located.

SOFTWARE TEST PLAN CONTENTS CHECKLIST

A.1 Introduction

State what system, or part of the system, is being tested.

State what criteria the system is being tested against (refer to the Functional Specification or a Design Specification).

State which features are not being tested.

A.2 Architectural Design of Tests

Define the general test methods.

Define the level of testing to be used.

A.3 Specification of Testing Tools

Any testing tools should be described and designed fully and formally as for other parts of the system.

There is normally no need to specify test data files as they are normally defined by detailed tests.

A.4 Resources and Dependencies

State (possibly by reference to the project plan) any resources required and any activities that the tests are dependent on.

A.5 Detailed Test Specifications

Put each group of tests in a separate section.

Group tests either functionally or by level of detail.

Number groups within the Software Test Plan.

Groups should not depend on the environment set up by previous groups. Individual tests may depend on the environment set up by earlier tests in the same group.

Define tests in sufficient detail to allow somebody who is familiar with the system to implement them.

DO not bother to define each test in complete detail if some factors are obvious but all non-obvious factors should be covered.

For each test group include the following:

i)
a statement of the part of the system being tested by the group

ii)
a statement of the purpose of the tests

iii)
a statement of any assumptions

iv)
a description of the environment required for the test group

v)
a statement of any test groups which should precede the test group

For each individual test include the following:

1)
Action - the action to be taken

2)
Results - the expected results and how to check them

3)
Comments - any useful comments on the test

TEST REPORT CONTENTS CRECKLIST

A.6 Introduction

State to which test plan the report corresponds.

A.7 Environment

State which versions of which objects comprised the system tested.

State who performed the tests and where and when they were performed.

A.8 Test Results

State the test results.

This may consist of a simple statement that all tests gave the correct results.

This may consist of references to a project test log.

Test results should be grouped in the same way as in the test plan. If test results such as test plots or listings are not included then sufficient description should be given to allow them to be located.

NOTES ON DESIGNING SOFTWARE TESTS

This appendix contains some guidelines on the design of effective tests and groups of tests for software.

A.9 The Use of a Testing Hierarchy

When planning the testing of any but the simplest systems it is worth constructing a testing hierarchy whose detailed structure is likely to vary from project to project.

On the grounds that it is easier to test the lower level building blocks of a system in isolation than to test them when they are built into the complete system it is normally worthwhile to test modules or sub-systems of a system separately and then integrate them in one or more stages and to perform further tests as the integration proceeds. This is known as ‘bottom-up’ or ‘expanding kernel’ testing.

Once individual modules have been tested in isolation (module testing) the modules are fitted together in combination and the higher level functions are tested (integration testing). Integration testing mainly involves the testing of internal and external interfaces.

Final system testing checks the entire system against system requirements and performance objectives. This is really just the last stage of integration testing.

How many levels of test hierarchy are appropriate depends on the complexity of the system. For the simplest systems one level of test may be appropriate while for more complex systems three or four levels may be necessary. For most systems two or three levels of test are appropriate.

When the testing hierarchy has been planned it may be necessary to create a hierarchy of test plans. For simple systems these may be included in the Project Quality Assurance Plan but it is more normal for a number of separate plans to be created. These plans must be created from the top down but will normally be implemented from the bottom up.

When developing the smallest and simplest systems it may be unnecessary and uneconomical to have more than one level of testing and no testing may occur before the final system tests. However, the system must be tested before being presented for acceptance by the client.

A.10 White Box and Black Box Testing

It is worthwhile differentiating between black box tests and white box tests. In black box tests the tests assume no knowledge of the internal structure of the software being tested and can only examine the outputs of the software as a result of the various inputs. This means that black box tests have to test a large proportion of the possible inputs. In white box tests a knowledge of the internal structure of the software is assumed and so testing can be more efficient as internal trace and similar features can be used. White box tests have the disadvantage that conceptual faults or faults based on unwarranted assumptions are more likely to be overlooked.

Using trace code in tests can allow more efficient testing and can catch intermediate faults even when the final output is correct but there are drawbacks. Often the code with trace in has to be re-compiled before production use and so the system that is tested is not identical to the system that is delivered. This can cause problems when the trace code hides faults by affecting optimisation or absorbing override harmlessly.

If tests using trace are to be performed then some additional amount of black box testing should be performed on the production version of the system.

When white box testing is being performed it is possible to aim to test all possible routes through a piece of code. This may be regarded as a necessary condition of thorough testing (after all, if some piece of code has not been executed during tests then it has not been tested) but it should not be considered to be sufficient as it does not guarantee that all eventualities have been tested. If a system has been designed defensively to handle errors robustly then it may not be possible to execute some of the error handling code. In such a case visual Inspection has to suffice. In some cases tools, such as test coverage analysers, may be available to check that all routes have been exercised.

Test Data Generation

Where valid inputs are limited to certain ranges the test data should include examples of valid data and invalid data and should include extreme boundary cases that are only just valid and only just invalid. Tests where invalid data is input are sometimes referred to as negative tests (as opposed to positive tests where valid data is input).

When testing invalid inputs both subtly invalid inputs and grossly invalid inputs should be tested. Subtly invalid input data is more common when software is in production use but grossly invalid data can cause embarrassing failures due to numerical overflow or division by zero before being detected by validity checks.

Data can be invalid by virtue of its volume as well as its context and it is worthwhile testing for too little data and too much data.

Where textual data is in use as input data the length of the text as well as the content can cause the data to be invalid and should be tested. Tests should include both very short and very long data.

Where large volumes of data are required it may be worthwhile producing an automatic test data generation program. This can also be extremely useful in systems where the timing of inputs is crucial.

A.11 Testing Methods Worth Consideration

A considerable amount of work has been done on the subject of proving programs correct by regarding a program as a transformation of the Functional Specification but this is still prohibitively difficult for most systems.

The use of testing staff independent of the development staff can be useful. This provides a fresh view of the software and can find faults caused by incorrect assumptions rather than errors in implementation.

Independent testing staff should be at least on a par with the developers as far as competence is concerned and should be involved from a sufficiently early stage of a project in order to avoid the learning curve delaying results. The use of independent testing staff is not normally applicable to acceptance testing as this should be carried out by the client.

It may be impractical to have staff concerned solely with testing, either because the less creative nature of the work causes motivation problems or because the project cannot support full time testers. These problems can be overcome by the use of a 'buddy' system where development staff test each other's code. This has the advantage of spreading knowledge about sub-systems on a wider basis than would otherwise be the case.

In order to gain the benefits of using independent testing staff they should be responsible for creating the test plans as well as for carrying them out.

An interesting variation of the use of independent testing staff is to use ‘be-bugging’ to test the thoroughness of testing methods. In this approach a number of new faults are inserted into software before testing or a number of known faults are left uncorrected. A comparison between the number of the known faults found and the number left undiscovered after testing can give an idea of how effective the testing has been and whether further testing is necessary. It is crucial to remove these bugs after testing!

Making Tests Repeatable

A set of tests which produce no output or which cannot be repeated in some way are of no value as the results cannot be checked. For tests to be useful they must be repeatable, they must produce output that can be checked and the results of the check must be recorded. There are some systems where some tests may not be entirely repeatable in detail but it must be repeatable to some approximation.

If a test only works once it is of no value as it cannot be checked and it cannot be repeated after modifications have been made. When working on real-time systems making some tests repeatable may be very difficult due to the number of environmental factors concerned but it is still essential that a test be repeatable to some degree, even if it is not possible to duplicate the whole of the environment. If it is not possible to set up repeatable tests of important features then the system could be considered to have failed the testability criterion for the design.

How tests are run depends on the system being tested. In a system that is driven purely by input from text files or from the keyboard the tests can normally be automated to a considerable degree. In a menu driven system more interaction is required and in process control systems automating tests may be extremely difficult.

Wherever possible tests should be designed so that they can be run without user intervention or with a minimum of user intervention.

The advantages of wholly automated tests include a reduced risk of user error in running tests, improved consistency of test results and the encouragement of regression testing. In contrast, the easily variable nature of manually driven tests can be useful as well.

In order to allow automation of tests it may be appropriate to create stub modules to replace the interface between the sub-system under test and the outside world. This can allow the automation of tests of process control or similar systems.

This use of stubs can allow the thorough testing of a sub-system that would otherwise be very difficult to test but it has disadvantages. The disadvantages include: the cost of creating the stubs in the first place, the difficulty of repeating tests during maintenance and the possible delay in the testing of the actual interface that the stubs replace. The decision whether to use stubs should be taken after weighing the advantages and disadvantages.

Test Results

A test must produce some results that can be checked in order for the test to be useful. The results may be in the form of an output file or may be in the form of behaviour that must be observed and checked.

In the same way that automated test input is valuable if it is possible, output in the form of a file or files is also valuable if it is possible.

If output is in the form of a file then the tests may not need to be observed and can be run overnight or at some convenient time. It may be easier to check a listing of an output file than to check the behaviour of a system as it happens. Once one set of output results has been checked it may be possible to check future tests by mechanically comparing the output files.

Stub modules may be useful for creating output files in the same way as they may be useful for automating the input interface and with the same reservations.

If it is impossible or uneconomical to produce output files from tests then some other means of recording the results needs to be found such as a project test log or by filling in fault reports for all failed tests.

Test results should be recorded in some form of test report. Guidelines for the layout and content of test reports are included in Section 5.

Any problems encountered during testing should be recorded on fault report forms in addition to any other test report.

Post-Installation Testing

With some systems it may be appropriate to leave part of the testing environment in place after installation. This can serve two purposes. The first is to allow the monitoring of performance when the system is being used and the second is to facilitate the detection and tracing of any faults that occur after installation.

 Planning for Change

Most systems need further development and maintenance after their initial development. It is important to avoid introducing bugs into systems during this process and a useful tool for this is regression testing. If the same tests as were performed during initial development are performed after maintenance work then the developers can have increased confidence that the system has not been de-stabilised.

This normally requires that the tests be planned in such a way as to make them easily repeatable by staff other than those who developed them.

When a change is made to a working system the developers should consider how much testing is required. Normally module testing of the affected module(s) should be followed by integration testing of all sub-systems that contain the affected module(s) and final system testing. In this way it may be practical to run just a subset of the total tests rather than running all tests.

EXAMPLE TEST REPORT

A.12 Introduction

A.12.1 Purpose

This document is a report of tests carried out on the widget control software.

A.12.2 Scope

This report relates to tests specified in related document [1].

A.12.3 Audience

This report is intended for staff of GFG IT involved in the widget control project.

A.12.4 Related Documents

 [1]
GFG IT UK
SO
??
Widget Control Software Test Plan

A.13 Environment

The tests were performed on version 6.66 of object 77 by J. Bloggs on 5 February 2001.

A.14 TEST RESULTS

Test groups 1 to 3 and 5 to 10 were performed with no problems and all tests gave the required results. Tests 1 to 12 of test group 4 were also performed with no problems and gave the desired results.

Test 13 of group 4 did not give the desired results, instead it caused all data to be erased from table vital-data. This caused all subsequent tests in the group to be aborted.

The output from the tests is in object 123, a copy of which is included in the project file.

For more details see change request number 87.

GFG IT-UK-99-SO 16/0.01
4 of 1
30 December 1997

