GFG Microsystems Limited
IT Department

[image: image1.png]

Information Technology Department

Configuration Management Standard
GFG Microsystems Limited
GFG IT Development
GFG IT
Configuration Management Standard
Standards
SO
0.01
GFG IT SET DOCUMENT “ UK-99-SO-2/0.01"
GFG IT UK-99-SO-2/0.01

12 December 1997
You will be notified if any standard is revised; it is your responsibility to obtain up-to-date personal copies of standards and to destroy old ones.

DOCUMENT DISTRIBUTION

Document Identification

Document Ref:

GFG IT UK-99-SO-2/0.01

Authors Ref:

s002o001.DOC

Author:

Date:

12 December 1997

Dept/Section:

GFG IT Development

Version:

0.01

Reason for Distribution

For Review

Status:

Draft

Reviewers
Department
Responsibilities
Comments Received

Distribution of Approved Version:

Issued By:

..

...

Copy No:

Issued To:

CONTENTS

51
INTRODUCTION

1.1
Purpose
5
1.2
Scope
5
1.3
Related Standards
5
1.4
Revision History
5
2
The Object and Document numbering system
7
2.1
Identifier
7
2.2
Country
7
2.3
Number issuing authority
7
2.4
Context
8
2.5
Object
9
2.6
Version
10
2.7
Permitted Abbreviations
10
3
File nAmes
12
3.1
File naming rules
12
3.2
Operating system assumptions
13
3.3
Construction of file names
13
4
The integration workbook
15
5
Configuration control
16
5.1
Object control forms
16
5.2
Use of software tools
18
5.3
Revision histories
21
5.4
Creation of new versions
21
6
Releases
22
6.1
The release form
23
6.2
Master disks
24
6.3
Nested releases
24
7
Change control
25
7.1
The change record form
25
7.2
The life cycle of change
27
8
Disk control
30
8.1
Disk numbers
30
8.2
Naming disks
30
8.3
Master disks
31
8.4
Exported disks
32

1 INTRODUCTION

1.1 Purpose

This standard defines a set of procedures which, when followed, ensure that GFG IT project activities conform to the British Standard for configuration management (BS 6488: 1984).

BS6488 does not itself define any detailed rules or procedures: it is in effect a requirements specification for a configuration management system.

1.2 Scope

All documents, software and other items may be controlled by the methods set out in this document.

The rules given are largely independent of the computer systems used to produce and maintain documentation and software, so the rules are in some cases fairly general. Where more specific rules need to be defined to cope with specific computer systems or software tools these are documented on a per-project basis.

A number of very different levels of activity are covered by this standard, including:

a)
naming of disk files

b)
use of software tools in constructing systems

c)
problem and bug reporting

d)
control of software releases ("configuration baselines")

e)
control of changes to systems (or their specifications) requested by clients, together with the necessary project management procedures.

All these different levels are aspects of the control and management of change.

1.3 Related Standards

The reader should be familiar with the following documents that supplement the contents of this Standard.

[1]
GFG IT UK
SO
1
The Object and Document Numbering System

[2]
GFG IT UK
SO
15
Commenting and layout checklist

[3]
6488 : 1984
BS

Configuration management of computer based systems.

1.4 Revision History

Version
Date
Author
Description
Sections Affected

0.1
97/12/12
GFG
First draft
All, diagrams and forms to be added

The Object and Document numbering system

The configuration management system is based on the GFG IT numbering system. The GFG IT numbering system is documented fully in GFG IT UK 99-SO-1, but the most relevant parts of the numbering system are also described here to make this standard more self-contained. (Be aware, however, that GFG IT UK 99-SO-1 is definitive in this area and takes precedence over this section.)

Anything can be assigned a GFG IT number which is recorded on the LIST form (GFG IT FO-2) for the project. A GFG IT number typically looks like:

Id country nia-context-object/version

where:

id is the identifier, which makes it clear to the reader of a document that the originator of the document is a GFG Microsystems Limited company: the id is GFG IT
the country, which identifies the national GFG IT organisation:
the country is "UK"

 the number issuing authority, which identifies the individual division or some other number issuing authority within the country

the context, which identifies the collection to which the object belongs

the object number, which identifies the object within its context

the version number, which identifies the particular version of the object being described.

1.5 Identifier

Every GFG IT number begins with the word “GFG IT" so that a document (or other object) bearing such a number may be easily identified by a client or other third party as emanating from GFG IT Development.

1.6 Country

This version of this standard is limited in scope to the UK, and the chosen country identification is "UK”.

1.7 Number issuing authority

A number issuing authority within GFG IT UK is authorised by procedures outside the scope of this standard. Each number issuing authority is assigned a two digit code, and this code is included in the GFG IT number, padded on the left with a leading zero if necessary.

The number issuing authority which is responsible for the GFG IT standards has the code 99 and all GFG IT UK standards are numbered accordingly.

1.8 Context

Every object which is within the scope of the GFG IT numbering system belongs to a context. Numbers allocated within one context are independent of numbers allocated within other contexts
.

A context is the highest level of classification within a given number issuing authority and can be one of:

·
category (see section 2.4.1 below
·
project (see section 2.4.2 below)

Most of the objects that most GFG IT personnel deal with most of the time will be objects that belong to a particular project and have a project context.

1.8.1 Category

An item which is of general applicability, i.e. it does not relate to a particular client or project
, is placed within a category
Examples:
a category might be:

a)
general standards

b)
administrative documents relating to recruitment procedures

The name of each category is a letter followed by one or more digits.

All categories with the same initial letter form a group of categories that relate to a particular topic. Each number issuing authority maintains a list defining the allocation of letters to topics.

For each (non-empty) group of categories a form GFG IT UK 99-FO-4 (known as the CATEGORY form) contains the following information:

a)
the letter defining the group of categories

b)
the description of the group of categories

c)
for each category in the group:

1)
the category number in red ink (this is to ensure that a photocopy of the CATEGORY form is not accidentally used for allocating new numbers, which could otherwise lead to duplicate numbers)

2)
the name or description of the category

Example: within the number issuing authority that controls the GFG IT standards the CATEGORY form for the S group of categories includes an entry stating that category SO contains general standards (and this category includes the document you are now reading).

1.8.2 Project

A project is a particular unit of work undertaken for a client, or, in the case of internal projects where there is no client, for GFG IT itself.

A client number is allocated by a number issuing authority and is a four digit numbers
.

A project number consists of a client number followed by a dot(.) and then a project serial number. Project serial numbers start at 1 for each client and are allocated sequentially by the number issuing authority.

1.9 Object

An object is a document or item of software or hardware or anything else that needs to be properly identified and controlled.

An object may be an assembly of smaller parts. These smaller parts would normally also be objects.

The object number is allocated within each context by the person responsible for the context.

The object number 0 in each context is reserved and is always a form GFG IT UK 99-FO-2 ("the LIST form"). This form records the object numbers allocated within the context and contains the following information:

a)
The identification of the context, i.e. the category, client number or project number.

b)
A description of the context.

c)
For each object number (from 1
 upwards
):
1)
The object number, written in red ink (this is to ensure that a photocopy of the LIST form is not accidentally used for allocating new numbers, which could otherwise lead to duplicate numbers).

2)
The name or description of the object.

1.10 Version

Each object has a version number and an object will typically move through several versions during its life. The version number is in the form:

digit . digit digit

and the following rules apply:

 a)
the first version of the object is given an arbitrary version number: commonly this is 0.00 or 1.00

 b)
the latest version of an object must have a higher number than all previous versions

c)
when an object is changed in any way, no matter how small the change then the version number MUST be increased
.

d)
when a minor change is made to the object the version number is incremented, for example 0.03 to 0.04, 1.56 to 1.57.

e)
when a major change is made to the object the version number is jumped up to the next highest number ending in 00, for example 0.03 to 1.00, 1.56 to 2.00.

f)
should an object ever reach version number 9.99 and require further change a new object number must be allocated for subsequent versions.

The version number may optionally be specified as part of the GFG IT number of an object. When it is specified it is written after the object number and separated from it by a slash (/).

1.11 Permitted Abbreviations

This section describes permitted ways in which the full GFG IT number may be abbreviated in two contexts:

a)
When it is required to refer to the latest version of an object rather than to a specific version the version number can be omitted.

b)
When it is required to refer to another object which belongs to the same project as the document making the reference the client and project numbers can be omitted.

For example,

-
if document GFG IT UK 11-1234.5-2711.00 refers to document GFG IT UK 11-1234.5-44, but does not need to specify a particular version of that document, then it may do so like this:

“... see GFG IT 44... “

-
GFG IT 1234.5-46

means the latest version of object 46 in project 5 for client 1234.

-
GFG IT 27/1.01

means version 1.01 of object 27 in the same project as the document which contains that reference.

File nAmes

Many objects are represented as computer files in some filing system. In order to keep proper control of the various files involved a formal file naming system must be followed.

File naming systems vary from computer to computer (see below) but all are based on encoding the GFG IT number for a particular version of an object in order to construct the name of the file containing that object.

1.12 File naming rules

Although file naming systems are machine dependent all systems must obey the following rule:

No two files anywhere in the system (in any directory on any disk on any computer at any time) may have the same name unless the contents of the files are identical.

This rule ensures that a file can be uniquely identified from its name without having to look at its contents (which in some cases might be difficult or impossible).

On some operating systems it is possible, and convenient, to have several files with the same basic filename but different extensions with these files containing the same information at different stages of processing, e.g. a compiler's input source file, its output binary file and its listing file. In such cases the following rule will always apply:

Several files may have the same base file name (and different extensions) only if one of the files completely defines the contents of all the others such that, given this source file, all the other files may be created from it by applying various software tools.

The file name is that part of the complete path name for a file which is independent of the directory structure on the disk. Thus the rules ensure that a file can be copied to any directory on any disk on any machine and the copy can still be uniquely identified from its file name without having to know where it was originally copied from.

Any date information retained with a file (or its directory entry) by a particular operating system must not be regarded as part of the file name. In particular software tools that may exist under certain operating systems which purport to perform configuration management functions based on such dates must not be used in this way (with the possible exception of backup and archive systems).

There are limits to what identical means. For example, a file might contain a compiler listing: it is permissible to delete the listing file and recreate it later by recompiling exactly the same source files with exactly the same compiler options, in which case the recreated listing file may have the same name as the earlier copy. The contents of the files may however differ in that the header line on each page of the listing may contain a different compilation date.

1.13 Operating system assumptions

Strictly speaking the formal file naming system is machine-dependent, as it depends on:

a)
the rules for constructing filenames on a particular operating system

 b)
any file naming conventions assumed or required by the software tools running on the machine.

However, many modern machines have similar file naming rules, and a general-purpose formal system is presented below that will work on many machines. The features assumed of the operating system are:

1)
the basic file name consists of at least 8 characters, and a name consisting of a letter followed by letters and digits is acceptable

2)
the file name contains some other component (often called the extension) which may be used to indicate the type of a file
.

1.14 Construction of file names

This section gives a general purpose rule for constructing file names for operating systems which obey the assumptions listed at 3.2 above. For operating systems which do not obey these assumptions a different rule will have to be used, but it should deviate from the one given below as little as possible.

The object whose GFG IT number is:

Id country nia-cccc.p-o/v.vv

is kept in the file whose (basic) name is:

aooobvvv

where:

a
is a letter allocated to encode the client and project number

ooo
is the object number padded on the left with zeros to three digits if necessary

b
is an additional letter allocated to encode the client and project number vvv is the version number with the decimal point omitted

The letters a and b are allocated from a central register held by GFG IT administration when a new project is started.

It is recommended that the above rules are followed even when the operating system allows greater flexibility (for example, longer filenames, or filenames containing spaces and other funny characters). This is to aid the portability of staff and software tools both of which will be used to processing filenames in the above form.

Example:

The object GFG IT UK 11-3985.5-46/1.23 is kept in the file named X046G123 (if the central register indicates that the letter pair allocated for project 3985.5 is X…G…).

What happens to an object number greater than 999? Either a second set of project indicator letters is allocated to encode the filenames for objects 1000 to 1999, or a new project is created and subsequent objects are placed in the new project.

The integration workbook

Configuration management is controlled by a set of forms. The configuration management forms for a project are kept in a file called the integration workbook. The integration workbook is also known (in BS 6488) by the name master configuration index.

Full compliance with BS 6488 requires that backup copies of the integration workbook are made from time to time and stored in a separate and secure location.

In general it is not necessary to copy (parts of) the integration workbook for other purposes, so a detailed set of procedures for making and recording such copies are omitted from this version of this standard. If it is found necessary to make other copies of an integration workbook section 10 of BS 6488:1984 should be consulted for guidance.

The following sections of this document describe the forms that make up the integration workbook.

Automated, or semi-automated configuration control that uses disk files rather than manually completed forms. A simple spread sheet can be employed for this purchase, but care must be taken to ensure that only one copy can be used as the master.

Configuration control

This section describes how the various versions of each object which has been assigned a GFG IT number are controlled.

1.15 Object control forms

The various versions of each object and the versions of the component which make up the object are recorded on an object control form. More than one such form is available: the most appropriate form for each particular object should be chosen:

a)
the MODULE form (GFG IT FO 11) is usually used for a level of software which does not generate an executable program; it can be used for any object with a limited number of components and would be the appropriate form to use for most documents

b)
the LINK form (GFG IT FO 12) is usually used for a level of software which does generate an executable program; it can be used for any other object with a large number of components

c)
the BUILD LIST form (GFG IT UK 99-FO- 23) is usually used for hardware objects.

There is a particular type of object called a release or configuration baseline which is subject to more controls than other objects and is discussed in a subsequent section of this document.

An object control form is used as follows:

1)
An appropriate type of form is chosen for the particular object.

2)
A title or description of the object is filled in together with the project number and object number to identify the object formally.

3)
A row of the form is used for each component of the object (for example a C header file or, in the case of a document, a separate file containing a chapter or a picture): an informal name or description of the component is filled in together with its object number. It is assumed by default that the component has the same project number as the main object: if this is not the case the project number must also be indicated on the form.

Example:

Module
Project
1234.5
Object
227

Wombat initialisation routines

Module
Project
1234.5
Object
227

Wombat initialisation routines

Version

Component
No.\Disk

This one
197

That one
23

Other 4893.2
503

Finally

4)
A column of the form is used for each version of the object. The following information is filled in:

a)
the version number of the object

b)
the number of a disk on which the object can be found (use of this field is project dependent: it will not be necessary if the project is being built on a hard disk (although in this case the field on the form could be used to record the number of a backup disk))

c)
the version numbers of the components.

Example:

Module
Project
1234.5
Object
227

Wombat initialisation routines

Version

101
102
103
105

Component
No.\Disk
53
“
“
27

This one
197
0
1
“
4

That one
23
100
“
X

Other 4893.2
503
3
5
“
“

Finally

0
“

Explanation:

Version 1.01 of the object contains as components GFG IT 197/0.00 (the leading zeros can be omitted when filling in the form), GFG IT 23/1.00 and GFG IT UK 11-4893.2-503/0.03. It lives on disk 53 (this might be disk GFG IT UK-11-M5-53 if this project uses M5 type disks).

Version 1.02 of the object is the same as version 1.01 except that it contains GFG IT 197/0.01 instead of GFG IT 197/0.00 and GFG IT 4893.2-503/0.05 instead of GFG IT 4893.2-503/0.03. (Note that the ditto marks “ read across the page rather than down.)

Version 1.03 of the object is the same as version 1.02 except that GFG IT 23/1.00 has been omitted and a new component GFG IT 199/0.00 has been added The X is used to indicate that the component GFG IT 23 is omitted from this and future versions of the object.

Version 1.05 of the object is the same as version 1.03 except that it contains GFG IT 197/0.04 instead of GFG IT 197/0.01 (and it is to be found on a different disk).

The object control form indicates which disk the latest version of the object is to be found on. It does not guarantee that all previous versions are still on the stated disks: there is no general requirement to keep every version of everything forever. Previous version are typically archived for a period so that if the latest version becomes damaged or contains revisions that are subsequently not required it is a simple matter to return to the previous state.

If it is required to keep a particular version of an object for future reference then a release should be made of the object.

Note that it is possible to use the rows of the form for purposes other than recording versions of components, for example to record the size of a program or to record the disk number that the component can be found on or to record compilation options or the values of symbols defined in a link control file.

It is also possible to use rows of the form for recording "used-on" information: for example if a shared module is used in two different links a row on the form can be used for each link to indicate in which links each version of the module has been used. This is not really a satisfactory way to implement "used-on” lists which really require automated tools which are outside the scope of this standard.

1.16 Use of software tools

This section is for guidance only and is not formally part of the standard.

Appropriate rules for the use of individual software tools (for example compilers, linkers, word processors, desktop publishing systems) can be deduced from material elsewhere in this standard, particularly section 3.

This section contains a few examples of how the rules might be applied to particular circumstances.

1.16.1 A C compiler

This example may be applied, with minor variations, to most compilers, assemblers etc.

A C compiler typically takes as input several source files, some of which contain no actual executable code and are usually called "header files". It typically generates one main output file, being the compiled binary for the module
. It may also generate auxiliary output files, such as source listings or debug symbol tables.

The chunk of source being compiled as a single operation
 is regarded as the object being compiled and is thus given an object number. This number is used when constructing the names of the following files:

a)
all the output files, including the object and the source listing

b)
the top level input file

So you might compile the file A123B005.C to obtain the compiled form A123B005.OBJ and the source listing A123B005.LST.

The main source file itself will normally contain no code and no declarations, being basically a C version of the MODULE form. It contains only comments and #include directives, for example:

/*
GFG IT UK 11-8888.9-123/0.05

Wombat initialisation module

*/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "A005B102.H"
/* Machine dependent types etc. */

#include "A089BO11.H"
/* Wombat structure defn */

#include "A092B002.I"
/* Static initialisation data */

#include "A093B003.I"
/* the actual code */

Note that references to header files that are provided with the compiler and are part of the ISO standard C language are referred to by the names defined in the ISO C standard. If it is necessary, for a particular project, to modify a standard header file the modified version must of course be given a GFG IT number and the file must be renamed accordingly.

Note that, as this file is simply a copy of a column of the MODULE form, a revision history within the file is not necessary, as the MODULE form contains the complete revision history of this file.

The advantages of using an "extra" file which just contains the #include directives include (but are not limited to):

1)
Different modules may share source code, for example a version of this module may be built for a different hardware environment simply by replacing this top level file by one that includes a different header instead of GFG IT 5. The main source files (GFG IT 92 and GFG IT 93) will then be shared and the problems of maintaining parallel versions of sources do not arise.

2)
The small control files, as illustrated above, are easier to process automatically than large source files with #includes embedded at random.

3)
Many changes to modules in practice consist of recompiling them with new versions of header files and no actual changes to the sources. Producing new versions of the small control files is faster, and uses less disk space, than would be the case if the #includes were buried in the source files.

4)
On machines with arbitrary restrictions and limits involving their filing systems (in practice every system) it is necessary from time to time to relocate files to different disks or different subdirectories. If the compiler is not clever enough to scan a set of directories nominated at command level it is necessary to edit all the relevant *includes. This again is much easier and cheaper if the #includes are all located in small control files.

1.16.2 A linker

A linker typically takes as input one control file and a selection of object files and library files and produces as output one main binary file (either executable or suitable for re-linking later) and some auxiliary files (such as link map listings, debug symbol tables etc.).

The program (or other entity) being linked is regarded as an object and is given a GFG IT number. This number is used to construct the filenames for:

a)
the input control file

b)
all the output files.

Note that this number is not the same as the number of any of the input binary modules.

The linker control file is analogous to the C compilation control file described in the previous section: it contains only references to other files (plus, in the case of a linker control file, various commands to tell the linker how to do the link). This file is essentially a machine-readable version of the LINK form.

1.17 Revision histories

Any human-readable object
 should contain a revision history. This is a list of descriptions of each version of the object in reverse order. Each entry should contain the following information:

a)
version number

b)
date that the version was created

c)
name or initials of the person creating the version

d)
a description of the changes since the previous version; if this object is under formal change control this description must contain the numbers of the changes that have been applied (see section 7 below).

1.18 Creation of new versions

This section lists the stages that are typically involved in creating a new version of an object which lives in a disk (etc.) file.

a)
Update the necessary object control form to indicate the existence of the new version.

b)
Copy the object to a new file whose name includes the new version number.

c)
Edit the control information in the file: update the GFG IT number that should be in a comment near the top of the file, and add an entry to the revision history for this new version.

d)
Make the desired changes to the file and save it.

e)
Make (in a recursive manner as necessary) new versions of any objects which include this object as a component. For example, if a C header file is changed, then the C control file for each module which uses the header must be updated, and the linker control files for each program which includes any of those modules must be updated.

Releases

This section defines a release and discusses the rules for making and using releases.

Note that what is called a release in this standard is commonly known throughout the QA industry as a configuration baseline and the two terms are to be considered equivalent.

A release is a collection of objects, whether pieces of software or documentation or hardware, in a defined state which is to be frozen or check-pointed for future use usually by people other than the immediate developers.

For each project a number of points at which a release must be made will be defined. These are likely to coincide with major deliveries to the client and might be, for example:

a)
Completion of functional specification. This release is likely to contain documentation only.

b)
Completion of design specification. This release is likely to contain documentation only (although some software may be included if, for example, it was necessary to write some programs to verify parts of the design, such as performance tests).

c)
Completion of software, released for testing by the client. This release will contain software as well as the documentation.

d)
Final release of the system after acceptance by the client.

However other releases may be made at intermediate stages at the discretion of the project manager.

A release must contain the complete set of source objects necessary to rebuild all the software, documentation and hardware contained in the release. It may also (redundantly) include some objects derived from these sources, such as an executable program.
,

1.19 The release form

When a release is made of a collection of software, documentation and hardware a RELEASE form
 (GFG IT FO-13) must be filled in to define the contents of the release.

In terms of the GFG IT numbering system a release is, like anything else, a particular version of an object which has a GFG IT number. Normally a release will consist of more than one software object and/or documentation object and/or hardware object. A GFG IT number is allocated to the release and this number, together with a brief description of the release and the reason for the release, is filled in on the form.

The form then contains an entry for each object that is part of the release, including each source which is necessary to rebuild the entire release. Each entry contains the following fields:

a)
a brief informal name or description of the object

b)
the filename under which the object is stored: normally an object is stored in a file whose name is constructed according to the rules given in section 3 above, in which case this field need not be filled in, but sometimes it is necessary to issue disks which have files which do not obey these rules

note that some objects may not have any existence in machine readable format, such as diagrams drawn by hand, in which case the filename field is of course irrelevant

c)
the project number, object number and version number to fully identify the object; the project number may be omitted if it is the same as the project number for the release.

Often it will be convenient to group together various subsets of objects making up the release, in which case rows on the forms can be used as headings to identify the groupings. Suggested groupings are:

1)
programs, configuration files and example files as issued to the client

2)
documentation as issued to the client

3)
sources for programs, which can be subdivided into such things as header files, source files, link control files etc.

4)
sources for documentation, which can be subdivided into such things as control files, chapters, pictures etc.

5)
sources for hardware, which can be subdivided into such things as circuit diagrams, parts lists, PCB information etc.

1.20 Master disks

One of the reasons for making a release is to checkpoint a particular stage in the development of a system and to ensure that it is properly backed up and archived.

A set of master disks (or tapes etc.) may be prepared (see below) containing copies of a release.

It is not however automatic for a set of master disks to be prepared for every release. For example, a release might be made in a separate directory of a shared hard disk so as to allow another part of the project team access to some shared code, and it might be considered unnecessary to prepare a set of master disks for this release.

1.21 Nested releases

Normally a release should contain the full set of sources necessary to rebuild everything in the release. There is some scope for saying that this isn't always necessary, particularly when several products might contain the same version of the same program.

This raises the possibility of having an intermediate release containing the shared program which is itself a component of the product releases. It could then be argued that the product releases do not need to duplicate the sources which are already part of the intermediate release.

Such exceptions to the general procedure are expected to be uncommon and are to be decided on a per-project basis
. In general, err on the side of caution and include everything of relevance in the release.

Change control

This section describes the procedures and forms to be used for controlling changes.

The procedures described in this section will be mandatory at some stages on some projects and may be optional at other stages or on other projects. In order to fully satisfy the client that we are obeying various external standards (particularly BS5750) it will be necessary for us to include in each release a complete record of every change that has taken place since the last release.
Changes (to documentation, software, hardware or other parts of the system) pass through several steps which are defined below. In the GFG IT system a (potential) change is allocated a change number which stays with the change through all its stages
.

1.22 The change record form

Each change may pass through any number of the following steps (except that, when formal change control is in operation, a change request must be approved before the change note stage can be approved):

a)
Problem report

This is a document raised by somebody (possibly within the GFG IT project team, possibly within the client organisation) who thinks there may be some sort of problem with the system. At this stage the precise details of the problem have not necessarily been diagnosed (for example it may not have been decided whether the problem is in the software, the functional specification or the original contract) and no solution need be proposed.

b)
Bug report

A bug report is raised when the functioning of a system (or the contents of a document) is believed to be wrong within the context of the project (for example, a particular program, given a particular input, does not behave as might have been expected from the functional specification).

c)
Change request

A change request is a request that a specific part of the system (whether documentation or software or whatever) be changed. Before the change can actually be made the necessary approval procedure must be invoked.

d)
Change note

When a change has been approved and implemented a change note document is completed which records the change. The next release of the system must include a list of all change notes that have been applied to the system since the previous release.
A single form, the CHANGE RECORD form (GFG IT FO-15) is used to accompany a change through each of these steps. There is a section on the form for each step. If a particular section does not contain enough room for the information to be recorded (e.g. if substantial listings form part of a bug report, or the list of items changed does not fit in the change note section) then additional sheets of paper may be added to the change record form which can then be regarded as a summary and control sheet. The CHANGE RECORD form itself contains several pages which may be used for this purpose.

Changes are numbered sequentially starting from one with a separate sequence for each project (or group of projects that share an integration workbook).

The project number should be filled in together with the object and version numbers of the release
 to which the change relates.

In the case of a problem or bug report a severity should be assigned to the problem. Unless defined otherwise for a particular project the following codes can be used:

A
the program crashes, or the bug is serious enough to render useless a large area of functionality within the program, or the bug can cause non-trivial loss of user's data; in the case of documentation an error which causes the user to be unable to use a large area of functionality, or an instruction which, when followed literally by a user unfamiliar with the system, could cause loss of user's data

B
a less serious fault that (for example) means that an individual feature doesn't work

C
a largely cosmetic problem, for example a minor spelling mistake in an error message, a screen display which should be tidied up, a minor feature which doesn't work but doesn't really have to because there are three other ways of doing the same thing.

1.23 The life cycle of change

The precise details of the way in which changes are processed through their various steps are project dependent, so this section gives guidelines only. (Most projects will use fewer procedures than listed here, large or critical projects may use more. Precise details, if sufficiently important, will be recorded in project documentation.)

1.23.1 The problem report

A problem report can be raised by more or less anybody. It may be decided for a particular project that the only stage at which the client may initiate the change procedure is at the problem report stage. (In this case, if the client wants a functionality enhancement, he will have to submit as a problem that the program "is not designed to do x".)

If there is insufficient room on the CHANGE RECORD form for all the necessary information the PROBLEM REPORT form (page 2 of GFG IT FO-16) may be used.

1.23.2 The bug report

Depending on the technical sophistication of the client, the client may be permitted to raise bug reports directly. Normally however a problem report changes to a bug report when investigation by the project team identifies a real bug. Possible outcomes of the investigation of a problem report include:

a)
The problem is determined to be a bug in the system and the bug report section of the form is filled in accordingly.

b)
The problem is determined to be an error in a document and the bug report section of the form is filled in accordingly.

c)
The problem is determined to be a misunderstanding by the person who raised the problem report, and it is determined that no improvements to documentation are necessary to remove the scope for this misunderstanding, so the change record is closed and no further action is taken.

d)
The problem is determined to be a bug in some third party system and appropriate action outside the scope of this standard is taken.

On sufficiently large, complicated or sensitive projects it may be necessary to have a body (for example the change review board) which has to formally approve the issuing of each bug report.

If there is insufficient room on the CHANGE RECORD form for all the necessary information the BUG REPORT form (page 3 of GFG IT FO 17) may be used.

1.23.3 The change request

A bug report changes to a change request when the bug is diagnosed and the changes needed to rectify it have been identified. (At this point it may become clear that there are, or may be, bugs in other systems, in which case appropriate problem or bug reports should be raised.) The change request section of the change record is filled in at this time.

The user may, on some projects, be permitted to raise change requests directly. In this case requests will typically be for enhancements to the specification of the system or for changes to accommodate changes to parts of the system being provided by the client.

The GFG IT project team may also raise change requests (which are not related to problems or bugs) directly. The circumstances under which this might occur include:

a)
The project team has identified a function specified by the functional specification which is difficult or impossible to implement. They may request a change to the functional specification to drop or modify the problem feature.

b)
The project team has identified an enhancement to the system functionality or performance which can be made available at little or no cost. They may request a change to the functional specification and/or to the system to add such features
.

If there is insufficient room on the CHANGE RECORD form for all the necessary information the CHANGE REQUEST form (page 4 of GFG IT FO-18) may be used.

1.23.4 Authorisation and implementation

Before a change request can be applied to a system (i.e. before the change is implemented) the change must be authorised. The authorisation required will depend on the particular project, the stage that the project has reached, and the circumstances of the particular change.

Every change must be authorised. In some cases (see below) the programmer (or other engineer) can authorise changes himself but he must be aware that he accepts responsibility for any consequences.
a)
Programmer or other engineer

The programmer or other engineer given the task of building or modifying a particular part of a system may implement changes within that part of the system without seeking higher authority for each change. He must not, however, move outside the brief that he has been given by his project manager without seeking higher authority: for example, if his job involves one program, and he discovers a bug in another program in the system, he may not change that other program without seeking appropriate authorisation.

b)
Project manager

The project manager may normally authorise changes relating to bug fixes if the project is currently within a phase in which bug fixing is a normal activity.

On some projects the project manager may authorise change requests raised by the client, having ensured that the client is properly informed of the consequences of the change (e.g. with respect to budget and timescale).

On some projects where GFG IT has an appropriate level of design authority the project manager may authorise change requests raised by the project team, having ensured that his manager is properly informed of the consequences of the change (e.g. with respect to budget and timescale).

c)
The client

In addition to the informal client approval which might need to be sought by the project manager (see above) it is essential for formal client authorisation to be obtained for all changes that involve strictly positive cost to a fixed price project.

The cost of making the change is estimated. A proposal is written and submitted to the client for approval. The client approves of the costs and a new (or modified) contract is drawn up and signed.

 d)
The change review board

On sufficiently large, complicated or sensitive projects it may be necessary to implement a complete formal system for tracking changes. This is done by a committee called the change review board whose complete terms of reference and procedures are outside the scope of this standard.

This committee would normally contain representatives of the Error! Bookmark not defined. project team, GFG IT management, client project team, client management and possibly other people such as representatives of the client's customer or end-user.

If there is insufficient room on the CHANGE RECORD form for all the necessary information the CHANGE NOTE form (page 5 of GFG IT FO-19) may be used.
Disk control

This section describes the numbering system used for magnetic (and other removable machine readable) media.

The word disk used in this section should be taken to mean "disk, tape, cartridge, CD-R or other removable machine readable media”

1.24 Disk numbers

Each disk (etc.) is assigned a GFG IT number which is written on the disk label. Disk numbers may be allocated in an M category by administration within GFG IT. Alternatively, for example when the type of disk (or other medium) is likely to be used only within a single project, the disk can be allocated a GFG IT number within that project.

1.25 Naming disks

Some operating systems allow disk to be named: the disk name is written onto the disk in a special place outside the normal filing system.

If the operating system provides a sensible disk naming facility it is useful to give the disks names which relate to their numbers (for example, a disk directory listing would then include the disk number).

A suitable naming convention should be chosen depending on the operating system in use. The recommended convention is that the disk name should be 8 characters long in the form:

GFG ITnnn

where nnn is the number of the disk (within its particular category, project etc.) padded on the left with leading zeros. For example, the disk:

GFG IT UK-11-M27-147

would be named:

GFG IT147

However there are circumstances under which disks cannot be named in this way. These include:

a)
Other requirements are imposed on disk names, for example the client has his own naming rules, or a particular piece of applications software requires disks to be named in a particular way.

b)
Some operating systems allow disks to be named but, when a disk is copied, copy the name of the source disk to the destination disk, thus overwriting the name of the destination disk. With this type of operating system there is not much point in trying to use sensible disk names as the operating system will destroy them for you sooner or later no matter how careful you are to try to remember to rename them back!

1.26 Master disks

At various stages of the development of a product, as determined on a per project basis, a set of master disks may be produced.

The relationship between master disks and releases of software is as follows:

a)
Master disks always contain copies of a release. Therefore if it is desired to make a set of master disks to record a particular state of a project a formal release of the project must be made first.

b)
It is not mandatory that a set of master disks should be made every time a release is made. For example, a release might be made to facilitate sharing code between parallel developments, and the release could be stored on a shared hard disk without the necessity to make a set of master disks.

1.26.1 Copies

Three copies of every master disk must be made:

1)
Copy 1 is used to take working copies for everyday use.

2)
Copy 2 is used only to recreate copy 1 in the event that copy 1 is destroyed.

3)
Copy 3 should be kept on separate premises (or, if that is not possible, in a fire safe) and is used only to recreate copy 2 in the event that copy 1 and copy 2 are both destroyed.

1.26.2 Volumes

A single copy of a set of master disks may consist of several disks, called volumes.
For example, the following may be produced:

-
some disks containing the binaries of the programs as duplicated and issued to the client (this may require more than one disk) some disks containing the sources for the programs (the sources may not all fit on one disk) some disks containing the sources for the documentation for the project (the documentation may not all fit on one disk)

The various volumes may be on different types of disk (e.g. different densities or even different machines if, for example, the documentation is prepared on a machine other than that for which the product is targetted).

1.26.3 Master disk forms

When a set of master disks is made a MASTER DISKS form (GFG IT-F12- 34) should be filled in and filed in the project integration workbook.

The following information must be filled in:

a)
The name of the system and the full GFG IT number of the release: this allows reference back to the release documentation for a full list of the contents of the disks.

b)
The date on which the master disks were made.

Then, for each volume:

c)
The volume number (volumes are usually numbered 1, 2, ... so that things like "Master for … volume 3 copy 211 can be written on the disk labels).

d)
A description of which parts of the release are present on that volume.

e)
An indication of the type of disk used (size, machine, format, operating system).

f)
The disk numbers of the disks used for each of the three copies of this volume.

Finally, the form contains space for any useful notes.

1.27 Exported disks

This section defines the rules for controlling exported disks.

When a disk is sent to anyone outside the GFG IT project team
 an EXPORTED DISK form (GFG IT-FO-22) will normally be filled in. This form contains details of the recipient of the disk, the reason for exporting the disk, and a complete and precise list of the contents of the disk.

It is quite often extremely useful to be able to determine exactly which version of the software was sent to a client on a particular date so the forms should be filled in even for informal deliveries of parts of the system.
Normally an exported disk will contain a copy of a release of a software system (in which case it will usually be a direct copy of a product master disk). In this case the contents section of the exported disk form need simply refer to the documentation for the release.

Disks which do not contain a copy of a release can also be exported in some circumstances, but it must then be made clear to the client (or other recipient) that he is not receiving a formal delivery of a complete configuration baseline.

Module Form
Project

Object

Version

Component
Disk /No.

GFG IT UK 99-FO-11/0.01

Link Form
Project

Object

Version

Component
Disk /No.

GFG IT UK 99-FO-12/0.01

Release
Page
1
of

Description
Project
Object
Version

Authorised

Date

Reasons for Release

Description
Filename
Project
Object
Version

GFG IT UK 99-FO-13

Release (continued)
Page

of

Description
Project
Object
Version

Description
Filename
Project
Object
Version

GFG IT UK 99-FO-14

Change record
Project

Change

Release
Project
Object
Version

Raised by

Date

Description of symptoms

Problem report

Severity
A
B
C

Diagnosis

Bug report

Corrections needed

Change request

Authorised by

Date

Description
Project
Object
Old Ver
New Ver
Change note

Change incorporated in release

Closed by

Date

Notes

GFG IT UK 99-FO-15

Change record – Problem report
Project

Change

Release
Project
Object
Version

Raised by

Date

Name

Ref

Company

Address

Tel

Fax

e-mail

Internal
Alpha
Beta
User
Other

Problem system
Environment

Name

Machine

Object

OS

Version

Disks

Memory

(A) Fatal
(B) Serious
(C) Cosmetic

Bug
Enhancement
Clarification
Software
Hardware
Doc

Description of symptoms

Fill in relevant parts of this section

Please attach any additional evidence or documentation

Bug report

GFG IT action:
Bug
Change request
Explained
Rejected

Notes

GFG IT UK 99-FO-16

Change record – Bug report
Project

Change

Release
Project
Object
Version

Raised by

Date

Name

Ref

Company

Address

Tel

Fax

e-mail

Internal
Alpha
Beta
User
Other

Problem system
Environment

Name

Machine

Object

OS

Version

Disks

Memory

(A) Fatal
(B) Serious
(C) Cosmetic

Bug
Enhancement
Clarification
Software
Hardware
Doc

Diagnosis

Fill in relevant parts of this section

Please attach any additional evidence or documentation

Bug report

GFG IT action:
Bug
Change request
Explained
Rejected

Notes

GFG IT UK 99-FO-17

Change record
Project

Change

Release
Project
Object
Version

Date

Requested by

Changes needed

Urgency
Immediate
Next release
Wish list

Estimates

Effort

Timescales

Cost

Authorised by
Initials
Date

Estimate to client

Accepted by Client

GFG IT approval

Order confirmation

Notes

GFG IT UK 99-FO-18

Change record – Change note
Project

Change

Release
Project
Object
Version

Raised by

Date

Changed Objects - description
Project
Object
Old ver
New ver

Changes incorporated in release

Changes completed
Date

Potential implications for
Project
Object
Version

Test log
Date

Unit test - passed

New release test – passed

Failed – new change record number

Notes

GFG IT UK 99-FO-19

Change Summary

Project

Change number
Severity ABC
Urgency INW
Closed Date
Description / notes

GFG IT UK 99-FO-20

Exported disk
Date

Number(s)

Exported to

Reason

Contents

Description
Project
Object
Version

GFG IT UK 99-FO-21

Master disks
Project
Object
Version

Description

Date

Vol
Description
Type
Copy

1
2
3

Notes

GFG IT UK 99-FO-22

� so, for example, there is no connection between � UNITID �GFG IT� UK 11-1234.5-8 and � UNITID �GFG IT� UK 11-A4-8 implied simply because each is object 8 within its context

� Such as, for example, this standard

� This means that there is no connection between client numbers issued by different number issuing authorities: for example, two divisions may each have a client with the same number, but there is no connection between the clients, who in general will be different; similarly, two divisions may allocate a client number for a particular company, but in general the two client numbers will be different.

� It is conventional, but not in any way required, that in most projects object number 1 is a general file in which all non-vital correspondence is placed. More important correspondence, such as letters containing contract negotiations, often have their own individual object numbers.

� It is normal, but not required, that object numbers are allocated sequentially starting with object number 1. While object numbers are defined not to have any semantics it is occasionally found useful to reserve a block of numbers for a set of related objects, possibly resulting in some unused numbers.

� It is conventional but not required that when a minor revision is made to an object its version number is incremented, e.g. 0.23 is increased to 0.24, and when a major revision is made the first digit of the version number is increased, e.g. 0.24 is increased to 1.00.

It is also common practice (but again not a requirement) that documents which are to be presented to clients are created with version 0.00, incremented (0.01, 0.02, …) as it is edited, and then has its version number increased to 1.00 for the first version that the client sees.

� Rules for keeping track of disk files etc. containing different versions of documents and other objects are outside the scope of this standard. Such rules do exist, however, and are documented in configuration management standards.

� Problems arise when different versions of a software tool (e.g. a compiler) are applied to the same source object. In theory a different version of a tool counts as a different tool and so should generate a file with the same name but a different extension. In practice this is difficult to arrange and it is usual to increment the version number of the source object with the revision history simply noting something like "version 2.03: recompiled with C version 1.5511. Note that using the same software tool with different options should similarly be treated as using a different version of the tool.

� When using operating systems which do not allow for extensions on filenames the file naming rules must be adapted. Some suggested adaptations are:

a)	If the filing system allows filenames significantly longer than 8 characters then the extension can be coded as part of the filename. For example, if fourteen characters are allowed, and the underline character is valid in filenames, then A123B456_OBJ might be the binary file created by compiling A123B456_ASM. (Some software tools work this way on such systems.)

b)	If all else fails, directories can be used to indicate type. This is to be avoided if possible, as it violates the rule that files must be identifiable regardless of which directory they might have been copied to, but this disadvantage can be overcome by ensuring that appropriate directory structures are built everywhere that files are copied to. For example, if the period (.) separates filenames from directories, then OBJ.A123B456 might be the binary file created by compiling ASM.A123B456. (Some software tools work this way on some systems.)

� (and/or, in some cases, an assembler source)

� (ignoring the complication of compilers which will perform several independent compilations in a single invocation)

� with the exception of files which simply contain machine-readable copies of object control forms, such as the C control files discussed above

� It is however usual to omit intermediate objects (such as module binaries) from releases: they can of course be rebuilt using the sources in the release.

� Software tools that are provided by the client, or are a standard part of the operating environment in use, are not normally included in the release. Software tools that have been developed or modified specially for the project must be included in the release. Software tools obtained from third parties may be included in the release at the project manager's discretion. It is essential that the project manager ensures that it is possible to find copies of obscure tools in the future, and including them in the release is a convenient way to achieve this.

� Software tools that automate production of release documentation are outside the scope of this standard. As long as they produce reports giving the same information as on the release forms then there is no need to fill in separate release forms manually.

� If/when automated tools are available to help build releases these problems will be eased; such tools are outside the scope of this standard.

� Other change control systems allocate different series of numbers to change requests, bug reports, change notes etc.: we have decided on the single number approach to eliminate the cross-referencing problems posed by having lots of different numbers connected with the same change.

� It may be that a change relates to a non-released version of some software (or documentation etc.), in which case one of the following should be true and the appropriate action taken:

a)	There has been no previous release of this project. In this case the project has not yet come under formal change control and the object and version numbers of the particular item to be changed should be filled in.

b)	There has been a previous release of this project, but the object to which the change relates was not part of that release because it has changed since the release. In this case the object and version numbers of the previous release should be filled in as normal.

c)	There has been a previous release of this project, but the object to which the change relates was not part of the release and has been created since that release. In this case the object and version numbers of the previous release should be filled in as normal, but it is not necessary for all such changes to be listed when the next release is made: it is sufficient for the next release to record that “new objects so-and-so have been added since the last release”.

� Note that, even if an additional feature costs nothing, the client may refuse to have it implemented for a number of reasons (e.g. his marketing department only wants that feature to be available on next year's model) and must therefore be offered the choice of rejecting the change before it is implemented.

� Note that backup and archive systems are, in general, outside the scope of this standard. They are also machine and/or operating system dependent. This section simply documents some conventions which you may choose to follow as being an easy way to ensure that releases (configuration baselines) are properly archived in a more or less system independent manner.

� Two copies are not enough: if you lose one of them, you have to recopy from the other. If the power fails during the copying operation you can end up with no copies at all. This has happened.

� This will normally be a client, but disks are sometimes sent directly to other people, for example:

the client's customer

a third party supplier of software, hardware, or anything else that relates to the project

another part of � UNITID �GFG IT�

GFG IT UK-99-SO-2/0.01
4 of 45
12 December 1997

